3.4.97 \(\int \frac {1}{(d+e x^2)^{3/2} (a+b x^2+c x^4)} \, dx\) [397]

3.4.97.1 Optimal result
3.4.97.2 Mathematica [C] (warning: unable to verify)
3.4.97.3 Rubi [A] (verified)
3.4.97.4 Maple [A] (verified)
3.4.97.5 Fricas [B] (verification not implemented)
3.4.97.6 Sympy [F]
3.4.97.7 Maxima [F]
3.4.97.8 Giac [F(-1)]
3.4.97.9 Mupad [F(-1)]

3.4.97.1 Optimal result

Integrand size = 26, antiderivative size = 341 \[ \int \frac {1}{\left (d+e x^2\right )^{3/2} \left (a+b x^2+c x^4\right )} \, dx=\frac {e^2 x}{d \left (c d^2-b d e+a e^2\right ) \sqrt {d+e x^2}}-\frac {c \left (e-\frac {2 c d-b e}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e} x}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e} \left (c d^2-b d e+a e^2\right )}-\frac {c \left (e+\frac {2 c d-b e}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e} x}{\sqrt {b+\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{\sqrt {b+\sqrt {b^2-4 a c}} \sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e} \left (c d^2-b d e+a e^2\right )} \]

output
e^2*x/d/(a*e^2-b*d*e+c*d^2)/(e*x^2+d)^(1/2)-c*arctan(x*(2*c*d-e*(b-(-4*a*c 
+b^2)^(1/2)))^(1/2)/(e*x^2+d)^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2))*(e+(b*e- 
2*c*d)/(-4*a*c+b^2)^(1/2))/(a*e^2-b*d*e+c*d^2)/(2*c*d-e*(b-(-4*a*c+b^2)^(1 
/2)))^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)-c*arctan(x*(2*c*d-e*(b+(-4*a*c+b^ 
2)^(1/2)))^(1/2)/(e*x^2+d)^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2))*(e+(-b*e+2* 
c*d)/(-4*a*c+b^2)^(1/2))/(a*e^2-b*d*e+c*d^2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)/ 
(2*c*d-e*(b+(-4*a*c+b^2)^(1/2)))^(1/2)
 
3.4.97.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 18.25 (sec) , antiderivative size = 2061, normalized size of antiderivative = 6.04 \[ \int \frac {1}{\left (d+e x^2\right )^{3/2} \left (a+b x^2+c x^4\right )} \, dx=\text {Result too large to show} \]

input
Integrate[1/((d + e*x^2)^(3/2)*(a + b*x^2 + c*x^4)),x]
 
output
(2*c*x*(45*Sqrt[-(((-b + Sqrt[b^2 - 4*a*c])*(2*c*d + (-b + Sqrt[b^2 - 4*a* 
c])*e)*x^2*(d + e*x^2))/(d^2*(b - Sqrt[b^2 - 4*a*c] + 2*c*x^2)^2))] + (30* 
e*x^2*Sqrt[-(((-b + Sqrt[b^2 - 4*a*c])*(2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e 
)*x^2*(d + e*x^2))/(d^2*(b - Sqrt[b^2 - 4*a*c] + 2*c*x^2)^2))])/d - 45*Arc 
Sin[Sqrt[-(((2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)*x^2)/(d*(-b + Sqrt[b^2 - 
4*a*c] - 2*c*x^2)))]] - (30*e*x^2*ArcSin[Sqrt[-(((2*c*d + (-b + Sqrt[b^2 - 
 4*a*c])*e)*x^2)/(d*(-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2)))]])/d - (45*(2*c*d 
 + (-b + Sqrt[b^2 - 4*a*c])*e)*x^2*ArcSin[Sqrt[-(((2*c*d + (-b + Sqrt[b^2 
- 4*a*c])*e)*x^2)/(d*(-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2)))]])/(d*(-b + Sqrt 
[b^2 - 4*a*c] - 2*c*x^2)) - (30*e*(2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)*x^4 
*ArcSin[Sqrt[-(((2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)*x^2)/(d*(-b + Sqrt[b^ 
2 - 4*a*c] - 2*c*x^2)))]])/(d^2*(-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2)) + 4*(- 
(((2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)*x^2)/(d*(-b + Sqrt[b^2 - 4*a*c] - 2 
*c*x^2))))^(5/2)*Sqrt[((-b + Sqrt[b^2 - 4*a*c])*(d + e*x^2))/(d*(-b + Sqrt 
[b^2 - 4*a*c] - 2*c*x^2))]*Hypergeometric2F1[2, 2, 7/2, -(((2*c*d + (-b + 
Sqrt[b^2 - 4*a*c])*e)*x^2)/(d*(-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2)))] + (4*e 
*x^2*(-(((2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)*x^2)/(d*(-b + Sqrt[b^2 - 4*a 
*c] - 2*c*x^2))))^(5/2)*Sqrt[((-b + Sqrt[b^2 - 4*a*c])*(d + e*x^2))/(d*(-b 
 + Sqrt[b^2 - 4*a*c] - 2*c*x^2))]*Hypergeometric2F1[2, 2, 7/2, -(((2*c*d + 
 (-b + Sqrt[b^2 - 4*a*c])*e)*x^2)/(d*(-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2)...
 
3.4.97.3 Rubi [A] (verified)

Time = 0.75 (sec) , antiderivative size = 325, normalized size of antiderivative = 0.95, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {1486, 208, 2256, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (d+e x^2\right )^{3/2} \left (a+b x^2+c x^4\right )} \, dx\)

\(\Big \downarrow \) 1486

\(\displaystyle \frac {e^2 \int \frac {1}{\left (e x^2+d\right )^{3/2}}dx}{a e^2-b d e+c d^2}+\frac {\int \frac {-c e x^2+c d-b e}{\sqrt {e x^2+d} \left (c x^4+b x^2+a\right )}dx}{a e^2-b d e+c d^2}\)

\(\Big \downarrow \) 208

\(\displaystyle \frac {\int \frac {-c e x^2+c d-b e}{\sqrt {e x^2+d} \left (c x^4+b x^2+a\right )}dx}{a e^2-b d e+c d^2}+\frac {e^2 x}{d \sqrt {d+e x^2} \left (a e^2-b d e+c d^2\right )}\)

\(\Big \downarrow \) 2256

\(\displaystyle \frac {\int \left (\frac {-c e-\frac {c (b e-2 c d)}{\sqrt {b^2-4 a c}}}{\left (2 c x^2+b-\sqrt {b^2-4 a c}\right ) \sqrt {e x^2+d}}+\frac {\frac {c (b e-2 c d)}{\sqrt {b^2-4 a c}}-c e}{\left (2 c x^2+b+\sqrt {b^2-4 a c}\right ) \sqrt {e x^2+d}}\right )dx}{a e^2-b d e+c d^2}+\frac {e^2 x}{d \sqrt {d+e x^2} \left (a e^2-b d e+c d^2\right )}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {-\frac {c \left (e-\frac {2 c d-b e}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {x \sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}-\frac {c \left (\frac {2 c d-b e}{\sqrt {b^2-4 a c}}+e\right ) \arctan \left (\frac {x \sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}{\sqrt {\sqrt {b^2-4 a c}+b} \sqrt {d+e x^2}}\right )}{\sqrt {\sqrt {b^2-4 a c}+b} \sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}}{a e^2-b d e+c d^2}+\frac {e^2 x}{d \sqrt {d+e x^2} \left (a e^2-b d e+c d^2\right )}\)

input
Int[1/((d + e*x^2)^(3/2)*(a + b*x^2 + c*x^4)),x]
 
output
(e^2*x)/(d*(c*d^2 - b*d*e + a*e^2)*Sqrt[d + e*x^2]) + (-((c*(e - (2*c*d - 
b*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]*x) 
/(Sqrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/(Sqrt[b - Sqrt[b^2 - 4*a* 
c]]*Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e])) - (c*(e + (2*c*d - b*e)/Sqrt 
[b^2 - 4*a*c])*ArcTan[(Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b 
+ Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/(Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[ 
2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]))/(c*d^2 - b*d*e + a*e^2)
 

3.4.97.3.1 Defintions of rubi rules used

rule 208
Int[((a_) + (b_.)*(x_)^2)^(-3/2), x_Symbol] :> Simp[x/(a*Sqrt[a + b*x^2]), 
x] /; FreeQ[{a, b}, x]
 

rule 1486
Int[((d_) + (e_.)*(x_)^2)^(q_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symb 
ol] :> Simp[e^2/(c*d^2 - b*d*e + a*e^2)   Int[(d + e*x^2)^q, x], x] + Simp[ 
1/(c*d^2 - b*d*e + a*e^2)   Int[(d + e*x^2)^(q + 1)*((c*d - b*e - c*e*x^2)/ 
(a + b*x^2 + c*x^4)), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a* 
c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[q] && LtQ[q, -1]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2256
Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^ 
(p_.), x_Symbol] :> Int[ExpandIntegrand[Px*(d + e*x^2)^q*(a + b*x^2 + c*x^4 
)^p, x], x] /; FreeQ[{a, b, c, d, e, q}, x] && PolyQ[Px, x] && IntegerQ[p]
 
3.4.97.4 Maple [A] (verified)

Time = 0.41 (sec) , antiderivative size = 429, normalized size of antiderivative = 1.26

method result size
default \(-\frac {\left (\frac {\left (b e -c d \right ) \sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}}{2}+\left (\frac {b c d}{2}+e \left (a c -\frac {b^{2}}{2}\right )\right ) d \right ) \sqrt {2}\, d \sqrt {\left (-2 a e +b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}\, \sqrt {e \,x^{2}+d}\, \operatorname {arctanh}\left (\frac {a \sqrt {e \,x^{2}+d}\, \sqrt {2}}{x \sqrt {\left (2 a e -b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}}\right )+\left (\sqrt {2}\, \left (\frac {\left (-b e +c d \right ) \sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}}{2}+\left (\frac {b c d}{2}+e \left (a c -\frac {b^{2}}{2}\right )\right ) d \right ) d \sqrt {e \,x^{2}+d}\, \arctan \left (\frac {a \sqrt {e \,x^{2}+d}\, \sqrt {2}}{x \sqrt {\left (-2 a e +b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}}\right )-e^{2} x \sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\, \sqrt {\left (-2 a e +b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}\right ) \sqrt {\left (2 a e -b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}}{\sqrt {\left (-2 a e +b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}\, \sqrt {e \,x^{2}+d}\, \sqrt {\left (2 a e -b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}\, \sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\, \left (a \,e^{2}-b d e +c \,d^{2}\right ) d}\) \(429\)
pseudoelliptic \(-\frac {\left (\frac {\left (b e -c d \right ) \sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}}{2}+\left (\frac {b c d}{2}+e \left (a c -\frac {b^{2}}{2}\right )\right ) d \right ) \sqrt {2}\, d \sqrt {\left (-2 a e +b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}\, \sqrt {e \,x^{2}+d}\, \operatorname {arctanh}\left (\frac {a \sqrt {e \,x^{2}+d}\, \sqrt {2}}{x \sqrt {\left (2 a e -b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}}\right )+\left (\sqrt {2}\, \left (\frac {\left (-b e +c d \right ) \sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}}{2}+\left (\frac {b c d}{2}+e \left (a c -\frac {b^{2}}{2}\right )\right ) d \right ) d \sqrt {e \,x^{2}+d}\, \arctan \left (\frac {a \sqrt {e \,x^{2}+d}\, \sqrt {2}}{x \sqrt {\left (-2 a e +b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}}\right )-e^{2} x \sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\, \sqrt {\left (-2 a e +b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}\right ) \sqrt {\left (2 a e -b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}}{\sqrt {\left (-2 a e +b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}\, \sqrt {e \,x^{2}+d}\, \sqrt {\left (2 a e -b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}\, \sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\, \left (a \,e^{2}-b d e +c \,d^{2}\right ) d}\) \(429\)

input
int(1/(e*x^2+d)^(3/2)/(c*x^4+b*x^2+a),x,method=_RETURNVERBOSE)
 
output
-1/((-2*a*e+b*d+(-4*d^2*(a*c-1/4*b^2))^(1/2))*a)^(1/2)/(e*x^2+d)^(1/2)/((2 
*a*e-b*d+(-4*d^2*(a*c-1/4*b^2))^(1/2))*a)^(1/2)/(-4*d^2*(a*c-1/4*b^2))^(1/ 
2)*((1/2*(b*e-c*d)*(-4*d^2*(a*c-1/4*b^2))^(1/2)+(1/2*b*c*d+e*(a*c-1/2*b^2) 
)*d)*2^(1/2)*d*((-2*a*e+b*d+(-4*d^2*(a*c-1/4*b^2))^(1/2))*a)^(1/2)*(e*x^2+ 
d)^(1/2)*arctanh(a/x*(e*x^2+d)^(1/2)*2^(1/2)/((2*a*e-b*d+(-4*d^2*(a*c-1/4* 
b^2))^(1/2))*a)^(1/2))+(2^(1/2)*(1/2*(-b*e+c*d)*(-4*d^2*(a*c-1/4*b^2))^(1/ 
2)+(1/2*b*c*d+e*(a*c-1/2*b^2))*d)*d*(e*x^2+d)^(1/2)*arctan(a/x*(e*x^2+d)^( 
1/2)*2^(1/2)/((-2*a*e+b*d+(-4*d^2*(a*c-1/4*b^2))^(1/2))*a)^(1/2))-e^2*x*(- 
4*d^2*(a*c-1/4*b^2))^(1/2)*((-2*a*e+b*d+(-4*d^2*(a*c-1/4*b^2))^(1/2))*a)^( 
1/2))*((2*a*e-b*d+(-4*d^2*(a*c-1/4*b^2))^(1/2))*a)^(1/2))/(a*e^2-b*d*e+c*d 
^2)/d
 
3.4.97.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 17249 vs. \(2 (299) = 598\).

Time = 217.47 (sec) , antiderivative size = 17249, normalized size of antiderivative = 50.58 \[ \int \frac {1}{\left (d+e x^2\right )^{3/2} \left (a+b x^2+c x^4\right )} \, dx=\text {Too large to display} \]

input
integrate(1/(e*x^2+d)^(3/2)/(c*x^4+b*x^2+a),x, algorithm="fricas")
 
output
Too large to include
 
3.4.97.6 Sympy [F]

\[ \int \frac {1}{\left (d+e x^2\right )^{3/2} \left (a+b x^2+c x^4\right )} \, dx=\int \frac {1}{\left (d + e x^{2}\right )^{\frac {3}{2}} \left (a + b x^{2} + c x^{4}\right )}\, dx \]

input
integrate(1/(e*x**2+d)**(3/2)/(c*x**4+b*x**2+a),x)
 
output
Integral(1/((d + e*x**2)**(3/2)*(a + b*x**2 + c*x**4)), x)
 
3.4.97.7 Maxima [F]

\[ \int \frac {1}{\left (d+e x^2\right )^{3/2} \left (a+b x^2+c x^4\right )} \, dx=\int { \frac {1}{{\left (c x^{4} + b x^{2} + a\right )} {\left (e x^{2} + d\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(1/(e*x^2+d)^(3/2)/(c*x^4+b*x^2+a),x, algorithm="maxima")
 
output
integrate(1/((c*x^4 + b*x^2 + a)*(e*x^2 + d)^(3/2)), x)
 
3.4.97.8 Giac [F(-1)]

Timed out. \[ \int \frac {1}{\left (d+e x^2\right )^{3/2} \left (a+b x^2+c x^4\right )} \, dx=\text {Timed out} \]

input
integrate(1/(e*x^2+d)^(3/2)/(c*x^4+b*x^2+a),x, algorithm="giac")
 
output
Timed out
 
3.4.97.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (d+e x^2\right )^{3/2} \left (a+b x^2+c x^4\right )} \, dx=\int \frac {1}{{\left (e\,x^2+d\right )}^{3/2}\,\left (c\,x^4+b\,x^2+a\right )} \,d x \]

input
int(1/((d + e*x^2)^(3/2)*(a + b*x^2 + c*x^4)),x)
 
output
int(1/((d + e*x^2)^(3/2)*(a + b*x^2 + c*x^4)), x)